

Problems

1. Hypothesis Testing with Laplacian Noise

A random variable N is said to be Laplacian distributed if its probability density function is given by

$$p_N(x) = \frac{1}{2}e^{-|x|} \quad \text{for } -\infty < x < \infty.$$

Consider the following decision problem involving the observed random variable Z :

$$H_0: Z = 2 + N$$

$$H_1: Z = -1 + N,$$

where the two hypotheses are equally likely.

- (a) Provide expressions for the probability density function for Z for each of the two hypotheses.
- (b) Show that the maximum likelihood decision rule can be simplified to

$$Z \stackrel{H_0}{\stackrel{H_1}{\gtrless}} \gamma.$$

Determine the value of the optimum threshold γ .

- (c) Compute the probability of error for this decision rule.

For the remainder of the problem, consider a two-dimensional random vector $\vec{N} = \begin{pmatrix} N_1 \\ N_2 \end{pmatrix}$ with *independent* Laplacian distributed components, i.e.,

$$p_{\vec{N}}(\vec{x}) = p_{N_1}(x_1)p_{N_2}(x_2) = \frac{1}{4}e^{-(|x_1|+|x_2|)} \quad \text{for } -\infty < x_i < \infty.$$

with $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Consider the following decision problem involving the observed random vector $\vec{Z} = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$:

$$H_0: \vec{Z} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \vec{N}$$

$$H_1: \vec{Z} = \begin{pmatrix} -1 \\ -3 \end{pmatrix} + \vec{N},$$

where again the two hypotheses are equally likely.

(d) Provide expressions for the probability density function for \vec{Z} for each of the two hypotheses.

(e) Show that the maximum likelihood decision rule can be simplified to

$$|Z_1 + 1| - |Z_1 - 2| \stackrel{H_0}{\geqslant} \stackrel{H_1}{\geqslant} |Z_2 - 1| - |Z_2 + 3|.$$

(f) For each of the following observations, indicate if the decision rule decides H_0 or H_1 :

- $\vec{Z} = \begin{pmatrix} 1.75 \\ -2 \end{pmatrix}$
- $\vec{Z} = \begin{pmatrix} 1.75 \\ -2.75 \end{pmatrix}$
- $\vec{Z} = \begin{pmatrix} 2.25 \\ -2.75 \end{pmatrix}$
- $\vec{Z} = \begin{pmatrix} 5 \\ -2.75 \end{pmatrix}$
- $\vec{Z} = \begin{pmatrix} 5 \\ -3.25 \end{pmatrix}$

(g) The absolute values in the decision rule induce three distinct intervals for Z_1 ($Z_1 < -1$, $-1 \leq Z_1 \leq 2$, and $Z_1 > 2$) and three intervals for Z_2 ($Z_2 < -3$, $-3 \leq Z_2 \leq 1$, and $Z_2 > 1$). Consider all *nine* regions formed by combinations of these intervals (e.g., the region with $Z_1 < -1$ and $Z_2 < -3$) and simplify the decision rule for each of these combinations.

(h) Draw a two-dimensional signal-space diagram with axes Z_1 and Z_2 . Mark the locations of $E[\vec{Z}|H_i]$ for the two hypotheses. Then, draw the decision boundary formed by the optimal decision rule using the results from part (g).

a) $H_0: P_{Z|H_0}(z) = \frac{1}{2} e^{-|z|}$

$H_1: P_{Z|H_1}(z) = \frac{1}{2} e^{-|z+1|}$

b) LLR: $\ln\left(\frac{P_{Z|H_1}(z)}{P_{Z|H_0}(z)}\right) \stackrel{H_1}{\geq} \stackrel{H_0}{\geq} \ln\frac{\pi_0}{\pi_1} = 0 = 0$

$$\Rightarrow -|z| + (z+1) \stackrel{H_0}{\geq} 0$$

3 cases summarized by:

$$z \stackrel{H_0}{\geq} \frac{1}{2}$$

3 cases:

a) $z \leq -1: +|z| - (z+1) = -z \Rightarrow H_1$

b) $-1 \leq z \leq 0: (z-0) + (z+1) = 2z+1 \geq 0$

$$\Rightarrow z \stackrel{H_0}{\geq} \frac{1}{2}$$

c) $z \geq 0: -(z-0) + (z+1) = 1 \geq 0 \Rightarrow H_0$

c) $P_e = \frac{1}{2} P_r \{z \geq \frac{1}{2} | H_1\} + \frac{1}{2} P_r \{z \leq \frac{1}{2} | H_0\}$

$$= P_r \{z \geq \frac{1}{2} | H_1\}$$

$$= \int_{\frac{1}{2}}^{\infty} \frac{1}{2} e^{-|z+1|} dz$$

$$= \int_{\frac{1}{2}}^{\infty} \frac{1}{2} e^{-(z+1)} dz = \frac{1}{2} e^{-\frac{1}{2}} \cdot \int_{\frac{1}{2}}^{\infty} e^{-z} dz = \frac{1}{2} e^{-\frac{1}{2}} \cdot (-e^{-z}) \Big|_{\frac{1}{2}}^{\infty}$$

$$= \frac{1}{2} e^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}} = \frac{1}{2} e^{-1} = \underline{\underline{\frac{1}{2} e^{-1}}}$$

d) $P_{Z|H_0}(z) = \frac{1}{4} \cdot e^{-|z_1-2|} \cdot e^{-|z_2-1|}$

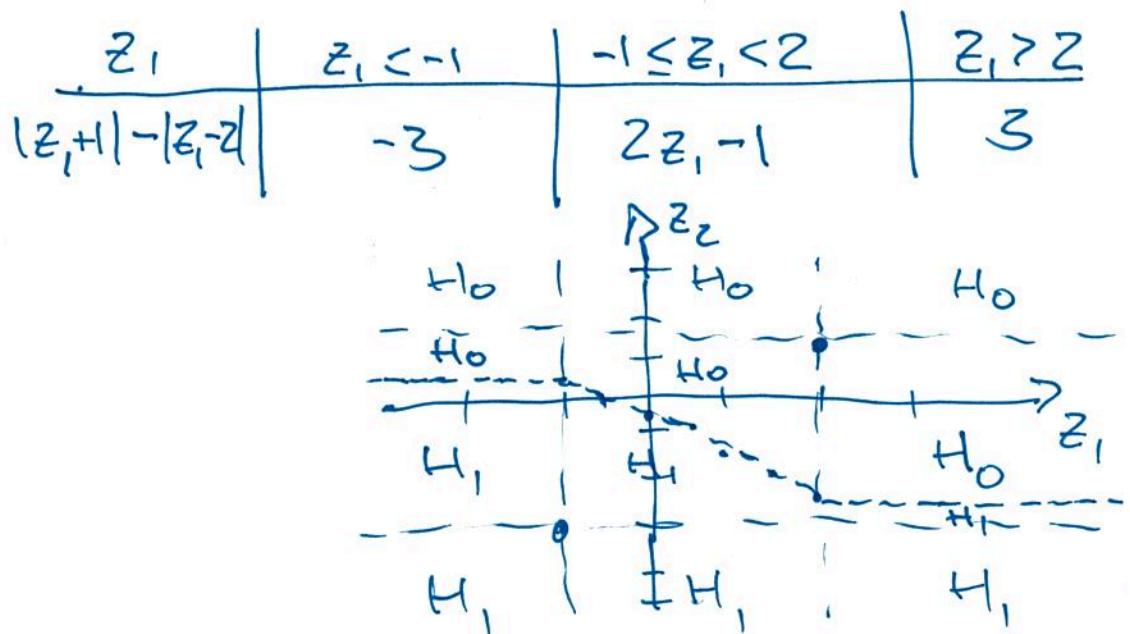
$$P_{Z|H_1}(z) = \frac{1}{4} e^{-|z_1+1|} \cdot e^{-|z_2+3|}$$

e) $\ln \frac{P_{Z|H_0}(z)}{P_{Z|H_1}(z)} = -|z_1-2| - |z_2-1| + |z_1+1| + |z_2+3| \stackrel{H_0}{\geq} 0$

$$\Rightarrow |z_1+1| - |z_1-2| \stackrel{H_1}{\geq} |z_2-1| - |z_2+3|$$

f.) i) $2.75 - 0.25 \geq 3 - 1 \Rightarrow H_0$
 ii) $2.75 - 0.25 \geq 3.75 - 0.25 \Rightarrow H_1$
 iii) $3.25 - 0.25 \geq 3.75 - 0.25 \Rightarrow H_1$
 iv) $6 - 3 \geq 3.75 - 0.25 \Rightarrow H_1$
 v) $6 - 3 \geq 4.25 - 0.25 \Rightarrow H_1$

z_1	$z_1 < -1$	$-1 \leq z_1 < 2$	$z_1 \geq 2$
$z_2 < -3$	$-(z_1+1) + (z_1-2) \geq 0$ $-(z_2-1) + (z_2+3) \geq 0$ $\Rightarrow -3 \geq 4 \Rightarrow H_0$	$+(z_1+1) + (z_1-2) \geq 0$ $-(z_2-1) + (z_2+3) \geq 0$ $\Rightarrow 2z_1 - 1 \geq 4$ $\Rightarrow z_1 \geq \frac{5}{2} \Rightarrow H_1$	$(z_1+1) - (z_1-2) \geq 4$ $3 \geq 4 \Rightarrow H_1$
$-3 \leq z_2 < 1$	$-3 \geq -2z_2 - 2$ $H_1 \Rightarrow z_2 \geq \frac{1}{2}$	$2z_1 - 1 \geq -2z_2 - 2$ $z_1 + z_2 \geq -\frac{1}{2}$	$+3 \geq -2z_2 - 2$ $H_1 \Rightarrow z_2 \geq \frac{5}{2}$
$z_2 \geq 1$	H_0	H_0	H_0
z_2	$z_2 < -3$	$-3 \leq z_2 < 1$	$z_2 \geq 1$
$ z_2 - 1 - z_2 + 3 $	4	$-2z_2 - 8$	-4



2. Binary Signal Sets

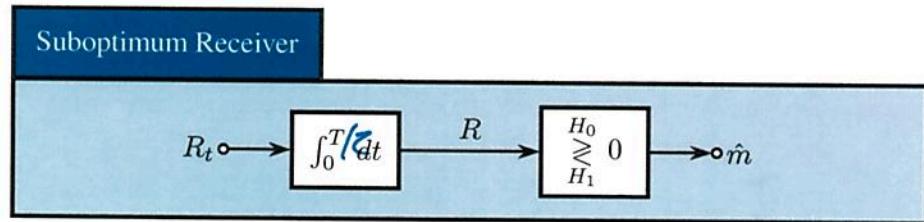
The following signal set is employed to transmit equally likely signals over an additive white Gaussian noise channel with spectral height $\frac{N_0}{2}$.

$$s_0(t) = \sqrt{\frac{4E}{T}} \sin(2\pi \frac{t}{T}) \quad \text{for } 0 \leq t \leq \frac{T}{2}$$

$$s_1(t) = -\sqrt{\frac{4E}{T}} \sin(2\pi \frac{t}{T}) \quad \text{for } 0 \leq t \leq \frac{T}{2}$$

Note that both signals consist of exactly one *half* cycle of a sinusoidal signal.

- (a) Sketch and accurately label the block diagram of a receiver that minimizes the probability of error.
- (b) Compute the energy of each of the two signals.
- (c) Compute the probability of error for your receiver from part (a).
- (d) Consider now the following receiver:



Find the conditional distribution of the random variable R at the output of the integrator for each of the two signals $s_0(t)$ and $s_1(t)$.

- (e) Compute the probability of error achieved by the suboptimum receiver.
- (f) Compare the probability of error for the suboptimum receiver to that of the optimum receiver. Express your answer in the form: “to achieve the same probability of error as the optimum receiver, the suboptimum system requires a times more energy.” Determine the factor a .
- (g) Assume now that the received signal is corrupted by an interfering signal $x(t) = 10 \cos(2\pi \frac{t}{T})$ so that the received signal under the i -th hypothesis ($i = 0, 1$) is given by

$$H_i: R_t = s_i(t) + 10 \cos(2\pi \frac{t}{T}) + N_t \quad \text{for } 0 \leq t \leq \frac{T}{2}$$

Compute the probability of error by the optimum receiver in the presence of the interfering signal.

(h) Explain your result in part (g).

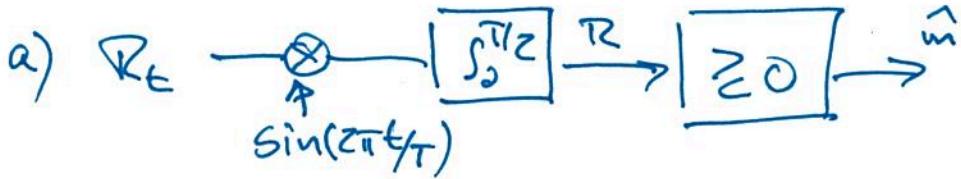
Hints: The following relationships may be useful:

$$\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$$

$$\sin(x) \cos(x) = \frac{1}{2} \sin(2x)$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$$



b) energy $\int_{T/2}^T$ same for both signals:

$$\begin{aligned} E &= \int_0^{T/2} \frac{4E}{T} \sin^2(z\pi t/\tau) dt \\ &= \frac{4E}{T} \cdot \frac{1}{2} \int_0^{T/2} (1 - \cos(4\pi t/\tau)) dt \xrightarrow{\text{integrates to zero}} = \frac{4E}{T} \cdot \frac{1}{2} \cdot \frac{T}{2} = E \end{aligned}$$

c) $P_e = Q\left(\frac{\|s_0 - s_1\|}{\sqrt{2N_0}}\right)$ $\|s_0 - s_1\|^2 = \|2 \cdot s_0\|^2 \quad |s_1 = -s_0$
 $= Q\left(\frac{\sqrt{4E}}{\sqrt{2N_0}}\right) = Q\left(\sqrt{\frac{2E}{N_0}}\right) = 4 \cdot \|s_0\|^2 = 4 \cdot E$

d) $H_0(s_0(t))$: $R \sim N\left(\int_0^{T/2} s_0(t) dt, \frac{N_0}{2} \cdot \frac{T}{2}\right)$
 $H_1(s_1(t))$: $R \sim N\left(-\int_0^{T/2} s_0(t) dt, \frac{N_0}{2} \cdot \frac{T}{2}\right)$
 $\int_0^{T/2} s_0(t) dt = \int_0^{T/2} \sin(z\pi t/\tau) dt = \sqrt{\frac{4E}{z\pi/\tau}} \left[\frac{\cos(z\pi t/\tau)}{z\pi/\tau} \right]_0^{T/2}$
 $\Rightarrow H_0: R \sim N\left(\frac{\sqrt{4E}}{z\pi/\tau}, \frac{N_0}{2} \cdot \frac{T}{2}\right)$
 $H_1: R \sim N\left(\frac{-\sqrt{4E}}{z\pi/\tau}, \frac{N_0}{2} \cdot \frac{T}{2}\right)$

e) $P_e = Q\left(\frac{\sqrt{4E}}{\sqrt{N_0\tau/2}}\right) = Q\left(\frac{2\sqrt{E}}{\sqrt{N_0}}\right)$

f) Energy must be increased by $(\frac{4}{z\pi/\tau})^2 \approx 2$:
 $a \cdot E \cdot \left(\frac{4}{\pi}\right)^2 = 2E$
 $\Rightarrow a = \frac{\pi^2}{8} = 1.23 \approx 1 \text{ dB}$

g) Opt. rec. frontend computes

$$R = \langle R_t, s_0(t) \rangle \quad \text{but } \langle \cos(z\pi t/\tau), \sin(z\pi t/\tau) \rangle =$$

\Rightarrow no impact on P_e .

$$\int_0^{T/2} \cos(z\pi t/\tau) \sin(z\pi t/\tau) dt = 0$$