TCOM 500: Modern Telecommunications Prof. B.-P. Paris Homework 5 Solution

Problems 1. **ISBN Correction:** Let the unknown digit be denoted by x.

(a) 0-385-49531-?: the ISBN must satisfy

 $0 \cdot 1 + 3 \cdot 2 + 8 \cdot 3 + 5 \cdot 4 + 4 \cdot 5 + 9 \cdot 6 + 5 \cdot 7 + 3 \cdot 8 + 1 \cdot 9 + x \cdot 10 = 0 \mod 11.$

Evaluating the products, leads to

 $192 + 10 \cdot x = 0 \mod 11$

and, therefore, x = 5 because 242 is divisable by 11.

(b) 0-201-1?794-2: the ISBN must satisfy

 $0 \cdot 1 + 2 \cdot 2 + 0 \cdot 3 + 1 \cdot 4 + 1 \cdot 5 + x \cdot 6 + 7 \cdot 7 + 9 \cdot 8 + 4 \cdot 9 + 2 \cdot 10 = 0 \mod 11.$

Evaluating the products, leads to

$$190 + 6 \cdot x = 0 \mod 11$$

and, therefore, x = 5 because 220 is divisable by 11.

2. Hamming Code:

- (a) 0001 111 Syndrome is 000, therefore this is a correct code-word.
- (b) 0101 101 Syndrome is 100, therefore the most likely correct codeword is $0100\tilde{1}01$.
- (c) 0100 111 Syndrome is 110, therefore the most likely correct codeword is 0100101.

3. Transposition Cipher:

(a) There are $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$ different ways to permute the columns.

(b) Arrange the message into a 5x5 matrix:

Η	L	A	T	E
T	E	S	S	M
A	E	W	S	G
S	0	M	A	C
L	T	E	P	E

With a little bit of trial-and-error (the characters THE in the first row are pretty helpful), it is apparent that thet columns should be permuted as follows

T	H	E	L	A
S	T	M	E	S
S	A	G	E	W
A	S	C	0	M
P	L	E	T	E

and we can decode: THE LAST MESSAGE WAS COMPLETE

4. Substitution Cipher:

(a) The number 26 is divisable by 2 and 13. Therefore, invertible keys cannot be divisable by 2 or 13. The invertible values of a are {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}.

Plaintext	;	Ciphertext		j
plain letter	x	$y = a \cdot x \mod 26$	cipher letter	
С	3	7	G	
E	5	3	\mathbf{C}	
I	9	21	U	The
K	11	17	Q	1 ne
L	12	2	В	
М	13	13	М	
Ο	15	9	Ι	
Т	20	12	L	

(b) For a = 11, the pertinent substitutions are

encrypted message is: U BUQC LGIM.

(c) The presence of three 9's in the cipher text suggests that the corresponding plaintext letter is an E. The key a = 7 maps

E to 9, because $7 \cdot 5 \mod 26 = 9$. With the key a = 7, the pertinent substitutions are

Plaintext		Ciphertext	
plain letter	x	$y = a \cdot x \mod 26$	cipher letter
А	1	7	G
E	5	9	Ι
Т	20	10	J
Ι	9	11	Κ
М	13	13	М
Ν	14	20	Т

and the decoded message is: MEET AT NINE.

5. Feedback Shift Register:

(a)

(b) The following table shows the contents of the shift register (MSB corresponds to rightmost register) and the corresponding output (which is just the MSB:

Register Contents	Output
11001	1
10011	1
00111	0
01111	0
11111	1
11110	1