ECE 465: Computer Network Protocols and Applications Homework 1 Solution Dr. Paris

Chapter 1 Review Questions

- 3. A networking program usually has two programs, each running on a different host, communicating with each other. The program that initiates the communication is the client. Typically, the client program requests and receives services from the server program.
- 8. In a packet switched network, the packets from different sources flowing on a link do not follow any fixed, pre-defined pattern. In TDM circuit switching, each host gets the same slot in a revolving TDM frame.
- 9. At time t_0 the sending host begins to transmit. At time $t_1 = L/R_1$, the sending host completes transmission and the entire packet is received at the router (no propagation delay). Because the router has the entire packet at time t_1 , it can begin to transmit the packet to the receiving host at time t_1 . At time $t_2 = t_1 + L/R_2$, the router completes transmission and the entire packet is received at the receiving host (again, no propagation delay). Thus, the end-to-end delay is $L/R_1 + L/R_2$.

Chapter 1 Problems

Problem 1.

There is no single right answer to this question. Many protocols would do the trick. Here's a simple answer below:

Messages from ATM machine to Server

Msg name	purpose		
HELO <userid></userid>	Let server know that there is a card in the ATM machine ATM card transmits user ID to Server		
PASSWD <passwd> BALANCE</passwd>	User enters PIN, which is sent to server User requests balance		
WITHDRAWL <amount></amount>	User asks to withdraw money		
BYE	user all done		

Messages from Server to ATM machine (display)

Msg name	purpose

PASSWD Ask user for PIN (password)

```
OK last requested operation (PASSWD, WITHDRAWL)
OK
ERR last requested operation (PASSWD, WITHDRAWL)
in ERROR
AMOUNT <amt> sent in response to BALANCE request
user done, display welcome screen at ATM
```

Correct operation:

client		server
HELO (userid)		(check if valid userid)
	<	11100112
PASSWD <passwd></passwd>	>	(check password)
	<	OK (password is OK)
BALANCE	>	
	<	AMOUNT <amt></amt>
WITHDRAWL <amt></amt>	>	check if enough \$ to cover
		withdrawl
	<	OK
ATM dispenses \$		
BYE	>	
	<	BYE

In situation when there's not enough money:

```
HELO (userid)
           ----> (check if valid userid)
           <---- PASSWD
PASSWD <passwd> -----> (check password)
           <---- OK (password is OK)</pre>
           ---->
BALANCE
           WITHDRAWL <amt> -----> check if enough $ to cover
withdrawl
           <---- ERR (not enough funds)
error msg displayed
no $ given out
BYE
           ---->
           <---- BYE
```

Problem 3.

- a) We can n connections between each of the four pairs of adjacent switches. This gives a maximum of 4n connections.
- **b)** We can n connections passing through the switch in the upper-right-hand corner and another n connections passing through the switch in the lower-left-hand corner, giving a total of 2n connections.

Problem 5.

- a) The time to transmit one packet onto a link is (L+h)/R. The time to deliver the packet over Q links is Q(L+h)/R. Thus the total latency is $t_s + Q(L+h)/R$.
- **b)** Q(L+2h)/R
- c) Because there is no store-and-forward delays at the links, the total delay is $t_s + (h+L)/R$.