
ECE 732: Mobile Communication Systems
Prof. B.-P. Paris

Solution to Homework 1

1. Problem 1

(a) Inner product:

(s1(t), s2(t)) =
∫ T

0
A2 cos(2π(fc +

∆f

2
)t) · cos(2π(fc − ∆f

2
)t)dt.

Using cos(a) · cos(b) = 1
2
(cos(a+ b)+cos(a− b)) the inner product

becomes

(s1(t), s2(t)) =
A2

2

∫ T

0
(cos(4πfct) + cos(2π∆ft))dt.

Now, the assumption fc À ∆f implies that the integral over
cos(4πfct) is negligibly small and the inner product equals

(s1(t), s2(t)) ≈ A2T

2
sinc(2π∆fT ).

Norms:

||s1(t)||2 ≈ ||s2(t)||2 ≈ A2T

2
.

using again the assumption fc À ∆f .

In summary,

ρ =
(s1(t), s2(t))

||s1(t)|| · ||s2(t)|| ≈
sin(2π∆fT )

2π∆fT
= sinc(2π∆fT ).

(b) ∆f = 1
2T

is the smallest value for which signals are orthogonal.

(c) Optimum (matched filter) receiver consists of the following three
elements:

• multiplication with s1(t)− s2(t),

• integration from 0 to T ,

• decision device: decide s1(t) was sent when output of integra-
tor is positive; otherwise decide s2(t) was sent.
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(d) For a matched filter receiver, the probability of error is given by

Pe = Q(
d√
2N0

),

where d2 = ||s1(t)−s2(t)||2. Given the above calculations, we find

d2 = ||s1(t)||2 + ||ss(t)||2 − (s1(t), s2(t)) ≈ A2T (1− ρ)

and, thus,

Pe ≈= Q(A
T (1− ρ)

2N0

).

Clearly, Pe is minimized when ρ is minimized. Since ρ depends on
∆f via a sinc-function, the smallest value of ρ corresponds to the
minimum of the sinc between the first and second zero-crossings.
The location of this minimum is approximately equal to ∆f = 3

4T

and the corresponding value is ρ = − 2
3π

.

2. Problem 2

(a) The optimum receiver is equivalent to an integrator (from 1 to 2)
followed by a decision device. The decision device decides s0(t)
was sent if output of integrator is positive.

The simplified form of the matched filter receiver follows from the
observation that s0(t) = s1(t) between 0 and 1.

(b) Using Pe = Q( d√
2N0

), we easily find Pe = Q(
√

2
N0

).

(c) Receiver and probability of error are identical for this signal set!

(d) The reason for identical receiver and performance with the two
signal sets is that the signal difference s0(t) − s1(t) is identical
for both signal sets; matched filter and error performance depend
only on signal difference.

Second signal set uses less energy per bit. First set is useful when
phase of the received signal is unknown (differential phase shift
keying).

3. Problem 3
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(a) It is useful for the remainder of the problem to consider the fol-
lowing the receiver structure.

• First branch correlates with a sinusoid of frequency f0, i.e.,
the received signal is multiplied with a sinusoid of frequency
f0 and then integrated from 0 to T .

• The second branch correlates the received signal with a sinu-
soid of frequency f1.

• The difference of the two brances (first minus second) is fed
into a decision device; this device decides the sinusoid of fre-
quency f0 was transmitted when the difference is positive.

(b) The assumptions about the signals imply that the signals are or-
thogonal and that each signal requires the same bit energy Eb =

A2
0T . Consequently, the probability of error equals Pe = Q(

√
A2

0T

N0
).

The requirement that Pe = 10−3 implies that the bit duration T
must satisfy:

T = Q−1(10−3) · N0

A2
0

.

The data rate is the inverse of T .

(c) For the receiver described in the problem, the multiplication with
the sinusoids is replaced with a multiplication with square waves
of identical frequencies and phases. This implies the following
statistics

• Mean of integrator in first branch (f0), when a sinusoid of fre-
quency f0 was sent, is

√
2A0

T
π
. When a sinusoid of frequency

f1 was sent, the mean is 0.

• Mean of integrator in second branch (f1), when a sinusoid of
frequency f1 was sent, is

√
2A0

T
π
. When a sinusoid of fre-

quency f0 was sent, the mean is 0.

• Variance of difference of the integrator ouputs is N0T .

From these results, it follows that the probability of error increases
to:

Pe = Q(

√
A2

0T

N0

√
2

π
).
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(d) The receiver must know be converted to an energy detector. In
each of the branches we need two multipliers, offset by 90o in
phase. After multiplication, the resulting signals are integrated
from 0 to T and then squared before the squares are added. The
difference of the two branches is still fed into a decision device.

Computation of the probability of error is difficult and lengthy;
see ECE 630 notes for details. The resulting probability of error
is (approximately):

Pe =
1

2
exp(−A2

0T

N0

4

π2
).

4. Problem 4
Begin by determining the base-band equivalent signals for x(t) and
h(t):

xb(t) =
1√
2
Π(

t

τ
) · exp(j2π∆ft)

and
hB(t) = a exp(−at)u(t).

Then, the baseband equivalent output signal yb(t) is obtained by con-
volving xb(t) ∗ hb(t). Specifically,

yb(t) =
∫ ∞

0
xB(t− z) · hb(z)dz.

Evaluation of this integral (is straighforward but tedious and) yields

yb(t) =
1√
2





0 for t ≤ − τ
2

exp(j2π∆ft)− exp(−at) · exp(−(a + j2π∆f)τ/2) for − τ
2

< t < τ
2

exp(−at)(exp((a + j2π∆f)τ/2)− exp(−(a + j2π∆f)τ/2)) for t ≥ τ
2

The (passband) output signal y(t) is obtained from the baseband equiv-
alent signal yb(t) via

y(t) =
√

2<{yb(t) · exp(j2πf0t)},
which reduces to

y(t) =





0 for t ≤ − τ
2

cos(2π(f0 + ∆f)t)− exp(−a(t + τ/2)) · cos(2π(f0t−∆fτ/2)) for − τ
2

< t < τ
2

exp(−a(t− τ/2)) cos(2π(f0t + ∆fτ/2))−
exp(−a(t + τ/2)) cos(2π(f0t−∆fτ/2)) for t ≥ τ

2
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