ECE 630: Statistical Communication Theory Prof. B.-P. Paris Homework 7 Due: March 26, 2018

Reading Madhow: Section 3.2 and 3.3.

Problems

1. Triangular signals are used to transmit equally likely, binary messages over an AWGN channel with spectral height $\frac{N_0}{2}$. Specifically, the two signals are

$$s_0(t) = \begin{cases} \frac{2A}{T} \cdot t & \text{for } 0 \le t \le \frac{T}{2} \\ 2A - \frac{2A}{T} \cdot t & \text{for } \frac{T}{2} \le t \le T \\ 0 & \text{else} \end{cases}$$

with amplitude $A = \sqrt{\frac{3E}{T}}$.

We will be comparing the performance of different receiver frontends. Each of the frontends is of the form

$$R = \langle R_t, g(t) \rangle = \int_0^T R_t g(t) \, dt$$

The backend decides in all cases

$$\hat{m} = \begin{cases} 0 & \text{if } R > 0\\ 1 & \text{if } R < 0. \end{cases}$$

- (a) Compute the energy of signals $s_0(t)$ and $s_1(t)$,
- (b) Compute the probability of error if the receiver frontend uses g(t) = 1 for $0 \le t \le T$.
- (c) Compute the probability of error for

$$g(t) = \begin{cases} 1 & \text{for } 0 \le t \le T/2 \\ -1 & \text{for } T/2 \le t \le T \\ 0 & \text{else.} \end{cases}$$

- (d) Compute the probability of error for $g(t) = s_0(t)$.
- (e) Explain (in terms of projections) why some of the above receivers are better than others.
- 2. The following signals are used to communicate one of two equally likely messages over an AWGN channel with spectral height $\frac{N_0}{2}$

$$s_0(t) = \begin{cases} \frac{A}{\sqrt{T}} & \text{for } 0 \le t \le T\\ 0 & \text{else} \end{cases} \quad s_1(t) = \begin{cases} \frac{-1}{\sqrt{T}} & \text{for } 0 \le t \le T\\ 0 & \text{else} \end{cases}$$

where A > 0.

The receiver frontend computes the integral of the received signal

$$R = \int_0^T R_t \, dt$$

and the backend decides which signal was transmitted using the following decision rule

$$\hat{m} = \begin{cases} 0 & \text{if } R > \gamma \\ 1 & \text{if } R < \gamma \end{cases}$$

where the threshold $\gamma > 0$ is the subject of this problem.

- (a) Compute the probability of error when A = 1 and $\gamma = 0$.
- (b) Compute the probability of error when A = 3 and $\gamma = 0$.
- (c) When A = 3, is there a value of γ that leads to a smaller probability of error? If so, what is the best value of γ and the corresponding probability of error?
- (d) Establish a general relationship between the best value for the threshold γ and the amplitude A. Also, find the corresponding probability of error.
- 3. The following signals are used to communicate one of two messages over an AWGN channel with spectral height $\frac{N_0}{2}$

$$s_0(t) = \begin{cases} \sqrt{\frac{E_b}{T}} & \text{ for } 0 \leq t \leq T \\ 0 & \text{ else} \end{cases} s_1(t) = \begin{cases} -\sqrt{\frac{E_b}{T}} & \text{ for } 0 \leq t \leq T \\ 0 & \text{ else.} \end{cases}$$

The a priori probabilities for signals $s_0(t)$ and $s_1(t)$ are $\pi_0 = \frac{3}{4}$ and $\pi_1 = \frac{1}{4}$, respectively.

The receiver frontend computes the integral of the received signal

$$R = \int_0^T R_t \, dt.$$

(a) Find the average probability of error when the decision rule is

$$\hat{m} = \begin{cases} 0 & \text{if } R > 0\\ 1 & \text{if } R < 0 \end{cases}$$

(b) Assume now that the decision rule is

$$\hat{m} = \begin{cases} 0 & \text{if } R > \gamma \\ 1 & \text{if } R < \gamma. \end{cases}$$

Give an expression for the average probability of error in terms of the threshold γ .

- (c) Minimize the average probability of error with respect to the threshold γ , i.e., find the optimum threshold $\hat{\gamma}$.
- (d) Let $p_{R|m=0}(r)$ and $p_{R|m=1}(r)$ denote the conditional pdfs of R. Plot $\pi_0 p_{R|m=0}(r)$ and $\pi_1 p_{R|m=1}(r)$. Describe how the optimum threshold $\hat{\gamma}$ is evident in your plot.
- 4. A "stealthy" communication system works as follows. To transmit m = 0, the transmitter sends white Gaussian noise of spectral height $\frac{E}{2}$ for T seconds. The transmitter does not transmit a signal to send m = 1 (i.e., $s_1(t) = 0$). Both messages are equally likely. The channel adds white Gaussian noise with spectral height $\frac{N_0}{2}$.

Assume that the (not optimal) receiver frontend computes the integral of the received signal

$$R = \int_0^T R_t \, dt.$$

- (a) Find the conditional densities of R for both m = 0 and m = 1.
- (b) What is the error probability when the decision rule is

$$\hat{m} = \begin{cases} 0 & \text{if } R > 0\\ 1 & \text{if } R < 0 \end{cases}$$

(c) Assume now that $E = 5N_0$ and that T = 1. Compute the probability of error for the decision rule

$$\hat{m} = \begin{cases} 0 & \text{if } R^2 > \gamma \\ 1 & \text{if } R^2 < \gamma, \end{cases}$$

with $\gamma = N_0 T \cdot \ln(\frac{E}{N_0})$. Note the square in the decision rule!