ECE 630: Statistical Communication Theory
 Prof. B.-P. Paris
 Homework 5
 Due: March 5, 2019

Reading Madhow: Section 3.2.

Problems

1. Let x and y be elements of a normed linear vector space.
(a) Determine whether the following are valid inner products for the indicated space.
i. $\langle x, y\rangle=\underline{x}^{T} A \underline{y}$, where A is a nonsingular, $N x N$ matrix and $\underline{x}, \underline{y}$ are elements of the space of N-dimensional vectors.
ii. $\langle x, y\rangle=\underline{x} \underline{y}^{T}$, where \underline{x} and \underline{y} are elements of the space of N-dimensional (column!) vectors.
iii. $\langle x, y\rangle=\int_{0}^{T} x(t) y(T-t) d t$, where x and y are finite energy signals defined over $[0, T]$.
iv. $\langle x, y\rangle=\int_{0}^{T} w(t) x(t) y(t) d t$, where x and y are finite energy signals defined over $[0, T]$ and $w(t)$ is a non-negative function.
v. $E[X Y]$, where X and Y are real-valued random variables having finite mean-square values.
vi. $\operatorname{Cov}(X, Y)$, the covariance of the real-valued random variables X and Y. Assume that X and Y have finite meansquare values.
(b) Under what conditions is

$$
\int_{0}^{T} \int_{0}^{T} Q(t, u) x(t) y(u) d t d u
$$

a valid inner product for the space of finite-energy functions defined over $[0, T]$?
2. Let $x(t)$ be a signal of finite energy over the interval $[0, T]$. In other words, $x(t)$ is a vector in the Hilbert space $L_{2}(0, T)$. Signals may be complex values, so that the appropriate inner product is

$$
\langle x, y\rangle=\int_{0}^{T} x(t) \cdot y^{*}(t) d t
$$

Consider subspace \mathcal{L} of $L_{2}(0, T)$ that consists of signals of the form

$$
y_{n}(t)=X_{n} \exp (j 2 \pi n t / T) \text { for } 0 \leq t \leq T
$$

where X_{n} may be complex valued.
(a) Find the signal $\hat{y}_{n}(t)$ that best approximates the signal $x(t)$, i.e., $\hat{y}_{n}(t)$ minimizes $\left\|x-y_{n}\right\|$ among all elements of \mathcal{L}.
Hint: Find the best complex amplitude \hat{X}_{n}.
(b) Now define the error signal $z(t)=x(t)-\hat{y}_{n}(t)$. Show that $z(t)$ is orthogonal to the subspace \mathcal{L}, i.e., it is orthogonal to all elements of \mathcal{L}.
(c) How do the above results illustrate the projection theorem?

3. Linear Regression

The elements of a vector of random variables \vec{Y} follow the model

$$
Y_{n}=a x_{n}+b+N_{n}
$$

where x_{n} are known and N_{n} are zero mean, iid Gaussian noise samples with variance σ^{2}. The parameters a and b are to be determined. We can think of the solution to this problem as the projection of \vec{Y} onto the subspace spanned by $a \vec{x}+b$
(a) Determine the least-squares estimates for a and b, i.e., find

$$
\hat{a}, \hat{b}=\arg \min _{a, b}\|\vec{Y}-(a \vec{x}+b)\|^{2}
$$

(b) What are the expected values of these estimates, $\mathrm{E}[\hat{a}]$ and $\mathrm{E}[\hat{b}]$?
(c) Compute \hat{a} and \hat{b}, when data are given by the $\left(x_{n}, Y_{n}\right)$ pairs

$$
\left\{\left(x_{n}, Y_{n}\right)\right\}_{n=1}^{5}=\{(0,1.3),(1,0.2),(2,0.1),(3,-0.4),(4,-1.2)\}
$$

(d) Is it true that the least-squares estimates for a and b are given by the inner products

$$
\hat{a}=\langle\vec{Y}, \vec{x}\rangle \text { and } \hat{b}=\langle\vec{Y}, \overrightarrow{1}\rangle ?
$$

$\overrightarrow{1}$ denotes a vector of 1 's. Explain why or why not?

