ECE 630: Statistical Communication Theory Prof. B.-P. Paris Homework 2
 Due: February 12, 2019

Reading Madhow: Appendix A, especially section A.3, and Section 3.1.

Problems

1. Madhow: Problem 3.2
2. Madhow: Problem 3.4
3. Let X and Y be independent Gaussian random variables with mean $m=0$ and variance $\sigma^{2}=1$.
(a) Sketch a two-dimensional coordinate system with axes X and Y. Indicate the region $R_{1}=\{X>\alpha$ and $Y>\alpha\}$ in that coordinate system; assume that $\alpha \geq 0$.
(b) Show that $\operatorname{Pr}\{X>\alpha, Y>\alpha\}=Q^{2}(\alpha)$. Note that this is the probability that a point (X, Y) falls in the region R_{1}.
(c) Now, add the region $R_{2}=\left\{X, Y \geq 0\right.$ and $\left.X^{2}+Y^{2}>2 \alpha^{2}\right\}$ to your diagram. How does the region R_{2} compare to R_{1} from part (a)?
(d) Show that $\operatorname{Pr}\left\{X, Y \geq 0, X^{2}+Y^{2}>2 \alpha^{2}\right\}=\frac{1}{4} \exp \left(-\alpha^{2}\right)$. Note that this is the probability that a point (X, Y) falls in the region R_{2}.
(e) From the above, show that we can conclude the well known bound

$$
Q(\alpha) \leq \frac{1}{2} \exp \left(-\frac{\alpha^{2}}{2}\right)
$$

4. Let \vec{X} be a zero mean Gaussian random vector with covariance matrix K.

$$
K=\left[\begin{array}{ccc}
3 & -3 & 0 \\
-3 & 5 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

(a) Give an expression for the density function $f_{\vec{X}}(x)$.
(b) If $Y=X_{1}+2 X_{2}-X_{3}$, find $f_{Y}(y)$.
(c) If the vector \vec{Z} has components defined by

$$
\begin{aligned}
& Z_{1}=5 X_{1}-3 X_{2}-X_{3} \\
& Z_{2}=-X_{1}+3 X_{2}-X_{3} \\
& Z_{3}=X_{1}+X_{3}
\end{aligned}
$$

determine $f_{\vec{Z}}(\vec{z})$. What are the properties of the new random vector?
(d) Determine $f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}=\beta\right)$

