ECE 630: Statistical Communication Theory Prof. B.-P. Paris Homework 2 Due: February 12, 2019

Reading Madhow: Appendix A, especially section A.3, and Section 3.1.

Problems

- 1. Madhow: Problem 3.2
- 2. Madhow: Problem 3.4
- 3. Let X and Y be independent Gaussian random variables with mean m = 0 and variance $\sigma^2 = 1$.
 - (a) Sketch a two-dimensional coordinate system with axes X and Y. Indicate the region $R_1 = \{X > \alpha \text{ and } Y > \alpha\}$ in that coordinate system; assume that $\alpha \ge 0$.
 - (b) Show that $\Pr\{X > \alpha, Y > \alpha\} = Q^2(\alpha)$. Note that this is the probability that a point (X, Y) falls in the region R_1 .
 - (c) Now, add the region $R_2 = \{X, Y \ge 0 \text{ and } X^2 + Y^2 > 2\alpha^2\}$ to your diagram. How does the region R_2 compare to R_1 from part (a)?
 - (d) Show that $\Pr\{X, Y \ge 0, X^2 + Y^2 > 2\alpha^2\} = \frac{1}{4} \exp(-\alpha^2)$. Note that this is the probability that a point (X, Y) falls in the region R_2 .
 - (e) From the above, show that we can conclude the well known bound

$$Q(\alpha) \le \frac{1}{2} \exp(-\frac{\alpha^2}{2}).$$

4. Let \vec{X} be a zero mean Gaussian random vector with covariance matrix K.

$$K = \left[\begin{array}{rrrr} 3 & -3 & 0 \\ -3 & 5 & 0 \\ 0 & 0 & 8 \end{array} \right]$$

- (a) Give an expression for the density function $f_{\vec{X}}(x)$.
- (b) If $Y = X_1 + 2X_2 X_3$, find $f_Y(y)$.
- (c) If the vector \vec{Z} has components defined by

$$Z_1 = 5X_1 - 3X_2 - X_3$$

$$Z_2 = -X_1 + 3X_2 - X_3$$

$$Z_3 = X_1 + X_3$$

determine $f_{\vec{Z}}(\vec{z})$. What are the properties of the new random vector?

(d) Determine $f_{X_1|X_2}(x_1|x_2 = \beta)$