ECE 630: Statistical Communication Theory
 Prof. B.-P. Paris
 Homework 1
 Due: January 29, 2019

Reading Madhow: Appendix A and Section 3.1.
Note: the material in sections A. 1 and A. 2 has been covered in ECE 528 and you are expected to be familiar and comfortable with that material.

Problems These problems are review problems for probability and random variables.

1. A noisy discrete communication channel is available. Once each second one letter from the three-letter alphabet $\{a, b, c\}$ can be transmitted and one letter from the three-letter alphabet $\{1,2,3\}$ is received. The conditional probabilities of the various received letters, given the various transmitted letters are specified by the diagram in the accompanying diagram.

The source sends a, b, and c with the following probabilities:

$$
\begin{aligned}
\mathrm{P}[a] & =0.3 \\
\mathrm{P}[b] & =0.5 \\
\mathrm{P}[c] & =0.2
\end{aligned}
$$

(a) Compute all (nine) conditional probabilities of the form $P(X \mid Y)$ for $X \in\{a, b, c\}$ and $Y \in\{1,2,3\}$.
(b) Compute all (nine) joint probabilities of the form $P(X, Y)$ for $X \in\{a, b, c\}$ and $Y \in\{1,2,3\}$.
(c) A receiver makes decisions as follows:

- If 1 is received, decide a was sent.
- If 2 is received, decide b was sent.
- If 3 is received, decide c was sent.

What is the probability that this receiver makes a wrong decision? (I.e.., its decision is different from what was actually sent.)
(d) What is the best receiver decision rule (assignment from 1, 2, 3 to $a, b, c)$?
(e) What is the resulting probability of error?
2. Consider a random variable X having a double-exponential (Laplacian) density,

$$
p_{X}(x)=a \mathrm{e}^{-b|x|},-\infty<x<\infty
$$

where a and b are positive constants.
(a) Determine the relationship between a and b such that $p_{X}(x)$ is a valid density function.
(b) Determine the corresponding probability distribution function $P_{X}(x)$.
(c) Find the probability that the random variable lies between 2 and 3.
(d) What is the probability that X lies between 2 and 3 given that the magnitude of X is less than 3.
3. Let $x_{1}, x_{2}, \ldots, x_{N}$ be a set of N identically distributed statistically independent random variables, each with density function p_{x} and distribution function F_{x}. These variables are applied to a system that selects as its output, y_{N}, the largest of the $\left\{x_{i}\right\}$, i.e., $y_{N}=$ $\max \left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. Clearly, y_{N} is a random variable.
(a) Express $p_{y_{N}}$ in terms of N, p_{x}, and F_{x}.
(b) Assume now that the x_{i} are exponentially distributed random variables:

$$
p_{x}(\alpha)=\left\{\begin{array}{cc}
e^{-\alpha} & \alpha \geq 0 \\
0 & \alpha<0
\end{array}\right.
$$

Calculate the expectation $\mathbf{E}\left[y_{N}\right]$ for $N=1,2$.
4. Path Loss and SNR Friis transmission equation

$$
L_{P}=\frac{P_{r}}{P_{t}}=\left(\frac{c}{4 \pi f_{c} d}\right)^{2}
$$

describes the path loss L_{p} under line-of-sight propagation conditions as a signal travels from transmitter to receiver.
(a) Convert the path loss expression above to a logarithmic scale (i.e., to dB) by taking $10 \log _{10}(\cdot)$ of both sides of the relationship.
(b) The transmitter of a communication system sends signals with the following parameters:

- transmit power $P_{t}=10 \mathrm{dBm}$
- bandwidth $W=10 \mathrm{MHz}$
- carrier frequency $f_{c}=1 \mathrm{GHz}$

Compute the received power P_{r}, as a function of the distance d between transmitter and receiver. Express P_{r} in dBm , i.e., compute $10 \log _{10}\left(\frac{P_{r}}{1 \mathrm{~mW}}\right)$.
(c) The communication system is impaired by thermal noise and is designed so that a signal-to-noise ratio $\frac{P_{r}}{P_{N}}$ of at least 10 dB is required for successful operation. What is the maximum distance d for which the system will work?

