ECE 465: Computer Networking Protocols
Prof. B.-P. Paris
Homework 6
Due: March 20, 2007

Reading Chapter 2 in Kurose and Ross, handouts on programming with C
sockets.

Experiments

1. You are to write a multi-threaded program with the following
functionality. The main thread creates and starts two additional
threads, a SenderThread and a ReceiverThread.

The SenderThread uses sockets to periodically (every 3 seconds)
send a message(of your choice) via UDP to a port (of your choice)
on the local host (IP address 127.0.0.1).

The ReceiverThread monitors the port you chose above for incom-
ing messages and prints any messages it receives on the screen.
Additionally, it counts the number of received messages and once
three messages have been received, it notifies the main thread of
this fact.

The main thread, after creating the two other threads, suspends
its operation until it is notified by the ReceiverThread as described
above. Once it is waken up, it prints an informative message to
the screen, signals the other two threads to exit and waits for them
to finish (i.e., joins them).

This assignment explores some additional functionality beyond
what we discussed in class and which is highly relevant for your
project. In particular, the ability to exchange information between
threads is examined here. Specifically, the sender and receiver
thread communicate via sockets whereas the receiver and the main
thread use a different way to exchange information.

To complete this assignment you will likely read more on Posix
threads. A great resource for this purpose is available from Liv-
ermore Labs at http://www.1llnl.gov/computing/tutorials/
pthreads/. Focus on the section on Thread Management to learn
how to create and join threads. The section on Condition Vari-
ables describe an ideal way to facilitate communications between


http://www.llnl.gov/computing/tutorials/pthreads/�
http://www.llnl.gov/computing/tutorials/pthreads/�

the receiver and the main thread that naturally supports suspend-
ing and waking up the main thread as required. I recommend that
you start with the example in the section entitled Waiting and Sig-
naling on Condition Variables and simply modify the functionality
of the threads in the example.

Turn in the code you developed and a trace showing the messages
printed on the screen during program execution. Make sure that
each print statement identifies the thread from which it originates.


http://www.llnl.gov/computing/tutorials/pthreads/#ConVarSignal�
http://www.llnl.gov/computing/tutorials/pthreads/#ConVarSignal�

