ECE 460: Communication and Information Theory Prof. B.-P. Paris Homework 5 Due: October 10, 2018

Reading Madhow:

1. Chapter 3: sections 3.4 and 3.5. Note, the textbook in section 3.5 covers synchronization in continuous time while we treat it in discrete time in class. The latter is a little easier and allows MATLAB experiments. Nevertheless, you need to read section 3.5.

Problems

- 1. Madhow: Problem 3.21
- 2. Use MATLAB (or Octave) to conduct the following experiments with the adaptQuadratic.m (URL: http://www.spec.gmu.edu/ ~pparis/classes/resources_460/adaptQuadratic.m) MATLAB script that we used in class.
 - (a) Vary the step size parameter μ to take the values 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. For each of these values, measure the number of iterations n until $|x[n] 2| < 10^{-5}$ for the first time. Present your findings in a plot or table. Discuss any observations that you deem interesting.
 - (b) What did you observe for $\mu = 0.5$? Can you explain your observation based on the iterative update rule $x[n + 1] = x[n] \cdot (1 2\mu) + 4\mu$?
 - (c) What do you observe when $\mu = 1$? Can you explain your observation based on the update rule?
 - (d) What happens if $\mu < 0$ or $\mu > 1$? Can you explain your observations from the update rule?
- 3. Use MATLAB (or Octave) to conduct the following experiments with the adaptivePhaseTracking.m (URL: http://www.spec.gmu.edu/~pparis/classes/resources_460/adaptivePhaseTracking.m) MATLAB script that we used in class.

For this problem, disable frequency offset (set do_freq_offset = false) and disable the I part of the controller by setting eta = 0.

- (a) Set the standard deviation of the additive noise to sigma=0.2;. Vary the step size parameter μ to take on the values 0.01, 0.03, 0.1, 0.3, 1. For each of these values of μ measure
 - the iteration number N_0 such that the phase error for the corrected signal **r**[**n**] is less than 0.01, i.e., $|\text{phase}(r)| < 10^{-2}$, for the first time.
 - the variance of the phase error $\operatorname{Var}(\operatorname{phase}(r)) = \frac{1}{M} \sum_{n=N_0+1}^{N_0+M} |\operatorname{phase}(r)|^2$, with M = 100.
- (b) Plot N_0 versus the step size μ and plot $\operatorname{var}_{\theta}$ versus the step size μ . Discuss your findings and make a well justified recommendation for how the step size μ should be selected.
- (c) Repeat the experiment for two other noise levels (e.g., sigma=0.05; and sigma=0.8;. Would you change your choice of μ in either of these cases?
- Repeat the preceding problem with frequency offset and integral control: set do_freq_offset = true and eta = mu/100.