Adaptive Tone Canceller

AN EXAMPLE SOLUTION PROF. PARIS ECE 201 SPRING 2015

Problem Statement

- A loud sinusoidal signal is to be cancelled at specific locations.
 - Using sinusoids generated by set of speakers.
 - Sum of all sinusoids loud signal and speakers – is measured by microphones.
- **Objective:** set amplitudes and phases of sinusoids so that signal at both microphones is near zero.

Mathematical Model

- All relevant signals are sinusoids of the same frequency:
 - Therefore, signals are characterized completely by phasors.
 - Sum of sinusoids corresponds to phasor sum.
- The system works on 25ms blocks of signals.
- The system measures the phasors $X_m[n]$ during the n-th block at both microphones.
- The measured phasors are provided to the adaptive canceller.
- The canceller sets the phasors $X_t[n]$ for the signals at the speakers for the n-th block.

The 2x1 vector of phasors $X_m[n]$ of signals at microphones are given by:

 $X_{m}[n] = H_{s}^{*}X_{s} + H_{t}^{*}X_{t}[n] + W[n]$

- $X_t 4x1$ vector of phasors for signals at speakers
- X_s phasor of signal from source (unknown)
- H_t 2x4 complex propagation matrix from speakers to mics (unknown).
- H_s 2x1 complex propagation matrix from source to mic (unknown)
- W[n] 2x1 complex vector of measurement noise (random).

Algorithm Description

- The algorithm searches for the phasor that produces the lowest power signal at the microphones:
 - Compute power with most recently used phasor.
 - If power is lowest ever seen, record power and corresponding, best phasor.
 - Select a new phasor to try; add a small perturbation to best phasor.
 - Record phasor, in case it turns out to be better.

• State variables:

- The algorithm relies on the following variables to be preserved between calls.
 - × pwr: the best, i.e., lowest, power ever seen.
 - best: the phasor that produced the best power
 - × last: the most recently used phasor.
- State variables are updated in each iteration.

Summary and Conclusions

- Presented simple algorithm to adapt phasors used by canceller.
- By construction, the algorithm produces ever improving phasors.
- Room for Improvement:
 - Measurement noise throws off the algorithm need averaging.
 - Fixed size perturbation will either produce slow convergence or poor cancellation.
 - × Small perturbation: slow convergence
 - × Larger perturbation: ineffective cancellation.