next up previous
Next: Imperfect Phase Information Up: Collected Problems Previous: Diversity Reception

Phase Shift Keying (PSK)

The signal set

\begin{displaymath}
\begin{array}{ccll}
s_1(t)& =& \cos(2\pi f_ct + \frac{\pi}{...
...pi f_ct+\frac{\pi}{4}) & \mbox{for $0 \leq t < T$,}
\end{array}\end{displaymath}

where $f_c T$ is an integer, is used to transmit one of two equally-likely messages over an additive, white Gaussian noise channel with spectral height $\frac{N_0}{2}$.
  1. Draw a block diagram of the optimum receiver. Can this receiver be implemented using only one correlator.
  2. Compute the probability of error for this receiver.
  3. Now, the signals

    \begin{displaymath}
\begin{array}{ccll}
s_3(t)& =& \sin(2\pi f_ct + \frac{\pi}{...
...pi f_ct+\frac{\pi}{4}) & \mbox{for $0 \leq t < T$,}
\end{array}\end{displaymath}

    are added to the above signal set. Each signal is then used to transmit one of four equally likely messages. Draw a block diagram of the optimum receiver for this quaternary signal set in additive white Gaussian noise.
  4. Compute the resulting probability of error.

Hint: Remember that the likelihood ratio test

\begin{displaymath}
\Lambda(\underline{R}) =
\frac{p_{\underline{R}\vert H_1}(\u...
...}\vert H_0)}
\stackrel{\displaystyle >}{<} \frac{\Pi_0}{\Pi_1}
\end{displaymath}

can also be written as

\begin{displaymath}
\Pi_1 p_{\underline{R}\vert H_1}(\underline{R}\vert H_1) \st...
...}{<}
\Pi_0 p_{\underline{R}\vert H_0}(\underline{R}\vert H_0).
\end{displaymath}



Dr. Bernd-Peter Paris
2003-01-28